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Background/Approach

* Deep Learning Method: distributed data-parallel approach to train deep
neural networks = Python framework using high-level Keras library with
Google Tensorflow backend

-- major contrast with “Shallow Learning” approaches including SVM’s, Random Forests,
Single Layer Neural Nets, etc. — including (i) deployment of accelerators (e.g., modern

GPU’s); and (ii) move from DL software deployment on clusters to supercomputers:.
-> Titan (ORNL), Summit-Dev (ORNL); Piz Daint (CSCS),
Isubame-3 (TiTech) + Intel Systems — Cori (LBNL), Theta (ANL)

-- stochastic gradient descent (SGD) used for large-scale (i.e., optimization
on supercomputers) with parallelization via mini-batch training to reduce
communication costs

* DL Supercomputer Challenge: scaling studies to examine if convergence
rate saturates with increasing mini-batch size (to thousands of GPU’s)




APPLICATION TOPIC: FUSION ENERGY SCIENCE
SITUATION ANALYSIS

Most critical problem for Fusion Energy: avoid/mitigate large-scale major disruptions

Approach: Use of big-data-driven statistical/machine-learning (ML) predictions for the
occurrence of disruptions in EUROFUSION facility “Joint European Torus (JET)’

Current Status: ~ 8 years of R&D results (led by JET) using Support Vector Machine
(SVM) ML on zero-D time trace data executed on CPU clusters yielding ~ reported
success rates in mid-80% range for JET 30 ms before disruptions , BUT > 95% with
false alarm rate < 3% actually needed for ITER (Reference — P_DeVries, et al. (2015)

‘Princeton Team Goals include:

(i)improve physics fidelity via development of new ML multi-D, time-dependent
software including better classifiers;

(il)develop “portable” (cross-machine) predictive software beyond JET to other
devices and eventually ITER; and

(ii)enhance execution speed of disruption analysis for very large datasets

- development & deployment of advanced ML software via Deep Learning
Recurrent Neural Networks




CLASSIFICATION

Binary Classification Problem:
o Shots are Disruptive or Non-Disruptive

Supervised ML techniques:

O Physics domain scientists combine knowledge base of
observationally validated information with advanced statistical/ML
predictive methods.

Machine Learning (ML) Methods Engaged:

Basic SVM approach initiated by JET team producing “APODIS”
software leading now to Princeton’s New Deep Learning Fusion
Recurrent Neural Net (FRNN) code

Approach: (i) examine appropriately normalized data; (i) use training set
to generate model; (iii) use trained model to classify new samples

— Multi-D data analysis requires new signal representations;

— FRNN software includes Deep Learning Convolutional and Recurrent
Neural Net features.




Challenges & Opportunities
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Machine Learning Workflow

Identif Preprocessin i
Signalg anpd feature ? Normalization Hy:r::'“m Use m?d?I for
* Classifiers extraction tuning prediction
All data placed on appropriate
Princeton/PPPLDL numerical scale ~ O(1) Apply ML/DL software on
predictions now advancing e.g., Data-based with al new data
to multi-D time trace signals divided by their
signals (beyond zero-D) standard deviation
Measured sequential data * All available data analyzed;
arranged in patches of * Train LSTM (Long Shqrt Term
equal length for training Memory Network) iteratively;

» Evaluate using ROC (Receiver
Operating Characteristics) and
cross-validation loss for every
epoch (equivalent of entire data
set for each iteration)



JET Disruption Data

# Shots Disruptive Nondisruptive | Totals
Carbon Wall | 324 4029 4353 JET produces ~
\I?Verlyl/lliltli\r/nv 185 1036 1221 Terabyte (TB) of
all (Ibw) data per day
Totals 509 5065 5574
JET studies = 9 Signals of zero-D | Data Size (GB)
(scalar) time traces, including
Plasma Current 1.8 ~09 GB data
Mode Lock Amplitude 1.8 CO”f]Cj(Ederﬁ”l
Plasma Density 7.8 eac SHo
Radiated Power 30.0
->Well over 350 TB total
Total Input Power 3.0 amount with mulfi
d/dt Stored Diamagnetic Energy 2.9 dimensional data yet to
Plasma Internal Inductance 3.0 be analyzed




Deep Recurrent Neural Networks (RNNs): Basic Description

° “Deep”
o Learn salient representation of complex, higher dimensional data

e “Recurrent”
o Qutput h(t) depends on input x(t) & internal state s(t-1)

Internal State (“memory/context”)
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Deep Recurrent Neural Nets: Schematic
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*Plasma Current
*Locked Mode Amplitude
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FRNN Code PERFORMANCE: ROC CURVES
JET ITER-like Wall Cases @30ms before Disruption

Performance Tradeoff: Tune True Positives (good: correctly caught disruption) vs. False
Positives (bad: safe shot incorrectly labeled disruptive).
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FP rate
Data (r~5_0 GB), 0D signals: ,
« Training; on 4100 shots from JET C-Wall campaigns
 Testing1200 shots from Jet ILW campaigns
« All shots used, no signal filtering or removal of shots



RNNs: HPC Innovations Engaged

GPU training

eNeural networks use dense tensor manipulations, efficient use of GPU FLOPS
eOver 10x speedup better than multicore node training (CPU’s)

Distributed Training via MPI
Linear scaling:
eKey benchmark of “time to accuracy”. we can
train a model that achieves the same results
nearly N times faster with N GPUs
Scalable
eto 100s or >1000’s of GPU’s on Leadership
Class Facilities
oTB’s of data and more
eExample: Best model training time on full
dataset (~40GB, 4500 shots) of 0D signals
training

o SVM (JET) : > 24hrs

o RNN (20 GPU’s) : ~40min
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Fusion Recurrent Neural Net (FRNN) Description

 Python deep learning code for disruption prediction in fusion (tokamak)
experiments

— Reference: https://github.com/PPPLDeepLearning/plasma-python
 Implements distributed data parallel synchronous RNN training

— Tensorflow & Theano backends
with MPI for communication

— FRNN code workflow is characteristic
of typical distributed deep learning software

— Core modules:

* Models: Python classes necessary to construct, train,
and optimize deep RNN models.

* Pre-process: arrange data into patches for stateful training; normalize
* Primitives: Python objects for key plasma physics abstractions

« Utils: a set of auxiliary functions for pre-processing, performance evaluation, and
learning curves analysis




Scaling Summary

Communication: each batch of data requires time for synchronization

Tsync ~ 109 (Nworkefrs]

Runtime: computation time
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FRNN Scaling Results on GPU’s

* Tests on OLCF Titan CRAY supercomputer
— OLCF DD AWARD: Enabled Scaling Studies on
Titan currently up to 6000 GPU’s
— Total ~ 18.7K Tesla K20X Kepler GPUs

Tensorflow+MPI
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CURRENT PERSPECTIVE

Forecasting disruptions using machine learning is an important
application of a general idea:

-> Use multi outcome prediction to distinguish disruption
types/scenarios

—> Beginning now to move from prediction to active control
(including new experimental proposals on the U.S. DIII-D tokamak in

San Diego, CA)

-> Increasingly large and diverse data sets require building
scalable systems to take advantaqe of leadership class
computing facilities




Fusion Deep Learning (FRNN) Technical Summary

* FRNN - a distributed data-parallel approach to train deep neural networks

(stacked LSTM’s);

* Replica of the model is kept on each “worker” = processing different mini-

batches of the training dataset in parallel;

* Results on each worker are combined after each epoch using MPI;

 Model parameters are synchronized via parameter averaging > with

learning rate adjusted after each epoch to improve convergence

» Stochastic gradient descent (SGD) used for large-scale optimization with

parallelization via mini-batch training to reduce communication cost.

—> Challenge: scaling studies to examine if convergence rate saturates/
decreases with increasing mini-batch size (to thousands of GPU’s).

- Targeted Large HPC Systems with P-100’s for Performance Scaling
Studies: (1) “TSUBAME 3" @ TITECH with ~ 3K GPU’s — “Grand
Challenge Runs”; (2) “PIZ-DAINT” Cray XC50 @ CSCS (Switzerland) with
> 4K GPU’S; (3) “SUMMIT-DEV” @ OLCF leading to SUMMIT with VOLTA
GPU’s




New FRNN scaling tests: TSUBAME 3.0

Very recent results: TSUBAME 3.0 supercomputer (TiTech, Tokyo, Japan)

Tsubame 3.0 initial “Grand Challenge Runs”

— Order of thousand Tesla P100 SXM2 GPUs, 4 GPUs per node, NVlink
— Tensorflow+MPI, CUDAS8, CuDNN 6, OpenMPI 2.1.1, GPU Direct
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Fusion Deep Learning (FRNN) Technical Summary (continued)

NVIDIA Volta GPU’s =» to be key element of 200 PF SUMMIT @ OLCF

Associated Challenge: requires training neural networks with “half-precision floats”

» Single-Precision = 32 bits (8 bits for exponent, 23 for fraction and 1 for sign)

* Double-Precision - 64 bits

NOTE: FRNN code has produced many results with single precision - float32 and has now
developed new half-precision float - 5 bits exponent, 10 bit fraction and 1 bit sign

REFERENCE: half-precision float deployment of FRNN with cross-benchmarking of new
results vs. earlier single precision results = paper to be presented at SC’17 (Denver,
CO)- includes description of changes in the weight update during SGD
(Stochastic Gradient Descent) method to prevent vanishing gradients due to
lower precision.

* [ ooking forward to testing new half-precision FRNN software capability on
NVIDIA Volta GPU’s at OLCF




Fusion Deep Learning (FRNN) Technical Summary (continued)

- GOOGLE Atrticle on Tensor Processing Units in Cloud:

"Build and Train Machine Learning Models on our new Google Cloud TPU's"

(Tensor Processing Units)
https://blog.google/topics/qoogle-cloud/google-cloud-offer-tpus-machine-learning/

The highlighted description highlights potential delivery of 11.5 PF of compute power to
expedite training!

Possible FRNN Software Relevance:

Since FRNN software already uses the TensorFlow backend, our current plan is to try the
Google Cloud TPU's -- beginning with their offer of free access to 1000 Cloud TPU's via the
TensorFlow Research Cloud — for which we have applied.

> APPROACH: Comparison of time to prediction and associated deep learning
neural nets training rates on supercomputers vs. that on the new Google
Cloud TPU’s promises to be quite informative.



Fusion Big Data ML/DL Application Summary

* Fusion Enerqy Mission:
-- Accelerate demonstration of the scientific & technical feasiblity of delivering Fusion Power
-- Most critical associated problem is to avoid/mitigate large-scale major disruptions.

* ML Relevance to HPC:

-- Rapid Advances on development of predictive methods via large-data-driven “machine-

learning” statistical methods

-- Approach Focus: Deep Learning/Recurrent Neural Nets (RNNs)

-- Significance: Exciting alternative predictive approach to ‘hypothesis-driven/first
principles” exascale predictive methods

*** Convergence/Complementarity: Physics-centric path-to-exascale HPC needed to
introduce/establish improved Supervised ML Classifiers with associated features

» Associated Challenge:

— Improvements over zero-D SVM-based machine-learning needed to achieve > 95%
success rate, <5% false positives at least 30 ms before disruptions -- with portability of software
to ITER via enhanced physics fidelity (capturing multi-D) with improvement in execution time
enabled by access to advanced HPC hardware (e.q., large GPU and possibly other
supercomputing systems).




Use Higher-dimensional signals 0D signals | 1D

Automatically learn cross-machine,
generalizable features

Takeaways: Deep Learning Analysis

n <

State: Reward

Control Algorithm

Action

Environment

Take advantage of
world class HPC

CNN
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Go from prediction to control
(deep reinforcement learning)
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